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Abstract: In a recent string theory motivated paper, Nicolini, Smailagic and Spallucci

(NSS) presented an interesting model for a noncommutative inspired, Schwarzschild-like

black hole solution in 4-dimensions. The essential effect of having noncommutative co-

ordinates in this approach is to smear out matter distributions on a scale associated with

the turn-on of noncommutativity which was taken to be near the 4-d Planck mass. In

particular, NSS took this smearing to be essentially Gaussian. This energy scale is suffi-

ciently large that in 4-d such effects may remain invisible indefinitely. Extra dimensional

models which attempt to address the gauge hierarchy problem, however, allow for the

possibility that the effective fundamental scale may not be far from ∼ 1 TeV, an energy

regime that will soon be probed by experiments at both the LHC and ILC. In this pa-

per we generalize the NSS model to the case where flat, toroidally compactified extra

dimensions are accessible at the Terascale and examine the resulting modifications in black

hole properties due to the existence of noncommutativity. We show that while many of

the noncommutativity-induced black hole features found in 4-d by NSS persist, in some

cases there can be significant modifications due the presence of extra dimensions. We also

demonstrate that the essential features of this approach are not particularly sensitive to

the Gaussian nature of the smearing employed by NSS.
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1. Introduction and background

The theoretical effort that has gone into understanding the full details of string/M theory

has inspired a number of ideas which, on their own, have had a significant impact on

particle physics model building and phenomenology. One of the more recent developments

of this kind has been the resurgence[1] of interest in noncommutative (NC) quantum field

theories[2] and, in particular, the question of how a NC version of the Standard Model

(SM) may be constructed[3] and probed experimentally[4].

The essential idea behind NC constructions is that the commutator of two spacetime

coordinates, now thought of as operators, is no longer zero. In its simplest form, for a

space with an arbitrary number of dimensions, D, this is can be written explicitly as

[xA, xB ] = iθAB = i
cAB
Λ2
NC

, (1.1)

where ΛNC is the mass scale associated with NC and cAB is normally taken to be a

frame-independent, dimensionless anti-symmetric matrix with constant, real, typically O(1)

entries; it is not a tensor. Here we assume that vastly different NC scales do not exist

depending upon the values of A,B. 1 In a general string theory context one might imagine

that ΛNC would naturally not be far from the 4-d Planck scale, M P l, and that the cAB are

generated due to the presence of background ‘electric’ or ‘magnetic’ type fields. Most of

the phenomenological studies of NC models[4] have assumed that we live in 4-d and that

ΛNC ∼ 1-10 TeV so that we have access to this scale at, e.g., the LHC or ILC. However,

if the NC scale ΛNC is indeed of order MP l, then probing NC physics directly may prove

difficult in the near term.

One way of possibly observing NC is its effects on the properties of black holes (BH).

In order to analyze this problem at a truly fundamental level one would need to successfully

construct the NC equivalent of General Relativity. Attempts along these lines have been

made in the literature[5] but no complete and fully compelling theory of this type yet exists.

Recently, Nicolini, Smailagic and Spallucci (NSS) [6] have considered a physically motivated

1In what follows, upper case Roman letters will label all D dimensions while Greek (lower case Roman)

letters will cover the range 0-3 (5 to n+ 4).
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and tractable model of the possible NC modifications to Schwarzschild BH solutions. The

essential ideas of this picture are: (i) General Relativity in its usual commutative form as

described by the Einstein-Hilbert action remains applicable. This seems justifiable, at least

to a good approximation, if NC effects can be treated perturbatively. The authors in ref.[5]

have indeed shown that the leading NC corrections to the form of the Einstein-Hilbert

action are at least second order in the θAB parameters. (ii) NC leads to a ‘smearing’

of matter distributions on length scales of order ∼ Λ−1
NC . Thus the usual ‘δ-function’

matter source of the conventional Schwarzschild solution is replaced by a centrally peaked,

spherically symmetric (and time-independent) mass distribution which has a size of order

∼ Λ−1
NC . This, too, seems justifiable based on the results presented in ref.[5], which note

that matter actions from which the stress-energy tensors are derived are modified at leading

order in the θAB parameters. Based on earlier work[7], NSS took this smeared distribution

to be in the form of a spherical 3-d Gaussian in 4-d whose size, due to the spherical

symmetry, was set by a single parameter, θ, indicative of the NC scale. Though such

a picture leads to many interesting properties for the resulting BH (to be elaborated on

below), since MP l ∼ ΛNC was assumed, as would be natural in 4-d, such BH are not

immediately accessible to experiment or to direct observation.

Another interesting prediction of string theory is that several extra dimensions must

exist. However, extra spatial dimensions, in models with an effective fundamental scale

M∗ now in the TeV range, have been discussed as possible solutions to the hierarchy

problem[8, 9]. In the case of ‘flat’ extra dimensions, e.g., in the model of Arkani-Hamed,

Dimopoulos and Dvali (ADD)[8], the 4-d Planck and fundamental scales are related by the

volume of the compactified extra dimensions:

M
2
P l = VnM

n+2
∗ , (1.2)

where Vn is the volume of the compactified manifold. Assuming for simplicity that these

extra dimensions form an n-dimensional torus, if all compactification radii (Rc) are the

same, then Vn = (2πRc)
n. In such a scenario gravity becomes strong at M∗ and not at

MP l which is viewed as an artifact of our inability to probe gravity at scales smaller than

Rc. This scenario has gotten a lot of attention over the last few years and the collider

phenomenology of these types of models has been shown to be particularly rich[10]. In

such a scheme it would be natural that the NC scale, ΛNC , would now also be of order

M∗ ∼TeV allowing it to be accessible to colliders. Furthermore, the copious production of

TeV-scale BH at colliders also becomes possible[11] and the nature of such BH could then

be examined experimentally in some detail. Thus it is reasonable to ask if the properties

of such TeV-scale BH may be influenced by NC effects, which originate at a similar scale,

and if these effects are large enough to be observable in collider data.

The goal of the present paper is to begin to address these issues. In particular we

will examine how NC BH in D dimensions differ from those in 4-d as well as from the

more conventional D-dimensional commutative Schwarzschild BH traditionally analyzed

at colliders. Furthermore, we will demonstrate that the essential features of this scenario

are not particularly sensitive to the detailed nature of the NC smearing.

– 2 –
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2. Analysis and results

We begin our analysis by reminding the reader that we will assume that D = 4 + n-

dimensional gravity, and BH in particular, can still be described by the conventional

Einstein-Hilbert (EH) action, i.e.,

S =
Mn+2
∗
2

∫
d4+nx

√−g R , (2.1)

with R being the Ricci scalar and M∗ being the (reduced) fundamental scale as appearing

in the ADD relationship above. It is important to recall that for the ADD scenario with

n ≥ 2, M∗ is only weakly constrained by current collider experiments, i.e., one finds that

M∗ ≥ 0.38−0.60 TeV, depending on the value of n, when the bound on the more commonly

used GRW[10] parameter MD > 1.5 TeV is employed.

In the present and NSS approaches the basic effect of NC is proposed to be the smearing

out of conventional mass distributions. Thus, following NSS[6], we will take, instead of the

point mass, M , described by a δ-function distribution, a static, spherically symmetric,

Gaussian-smeared matter source whose NC ‘size’ is determined by the parameter
√
θ ∼

Λ−1
NC :

ρ =
M

(4πθ)(n+3)/2
e−r

2/4θ . (2.2)

Here will we explicitly assume that both the horizon size of our BH and the NC parameter√
θ are far smaller than the compactification scale Rc so that the BH physics is not sensitive

to the finite size of the compactified dimensions. For ADD-type models this can be easily

verified from the numerical results we obtain below as the BH horizon size will typically be

of order ∼ 1/M∗ while Rc is generally many orders of magnitude larger as long as the value

of D is not too large[12] as is certainly the case when D ≤ 11. Note that the value of
√
θ

is directly correlated with the NC scale and is certainly proportional to it; however, within

this treatment the exact nature of this relationship is unspecified and would require a more

detailed model to explicitly determine. It is sufficient to remember only that
√
θ ≈ 1/ΛNC .

It is important to realize that many such parameterizations of this peaked smeared mass

distribution are possible which should lead to qualitatively similar physics results. However,

the various predictions arising from these may differ only at the O(1) level or less, as long

as the detailed structure of the peaked mass distribution is not probed. We will discuss

this issue further below.

The metric of our D-dimensional space is assumed to be given by the usual D-

dimensional Schwarzschild form

ds2 = eνdx2
0 − eµdr2 − r2dΩ2

D−2 . (2.3)

Here we will be searching for Schwarzschild-like, spherically symmetric and static solutions

with ν and µ being functions only of the co-ordinate r and we will further demand that

eν,µ → 1 as r → ∞; this will require that ν = −µ in the solutions of Einstein’s equations

as in the usual commutative scenario since the EH action and resulting field equations

– 3 –
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remains applicable. Note that the surface of the sphere, ΩD−2, can be simply described by

a set of D − 2 = n+ 2 angles, φi, where i = 1, . . . , n+ 2.

Given the assumed form of the matter density, ρ, above and the expectation that

ν = −µ as usual, two components of the diagonal stress-energy tensor, T AB, are already

determined, i.e., T rr = T 0
0 = ρ. As noted by NSS, the remaining components, T ii (no sum-

mation), all n + 2 of which are identical due to the spherical symmetry, can be obtained

from the requirement that TAB have a vanishing divergence, TAB;B = 0, where the semi-

colon denotes covariant differentiation. Given the nature of our metric it is easily seen that

both T 00;0 = 0 and T ii;i = 0, for all i, automatically. The remaining equation T rr;r = 0

then yields the explicit result

0 = ∂rT
r
r +

1

2
g00(T rr − T 0

0 ) ∂rg00 +
1

2

∑

i

gii(T rr − T ii ) ∂rgii . (2.4)

Since by construction T rr = T 0
0 and, noting that gii∂rgii = 2/r, for all (unsummed) i, this

yields

T ii = ρ+
r

n+ 2
∂rρ , (2.5)

for all i (without summation). This reproduces the 4-d NSS result in the limit when n→ 0.

With our metric the non-zero components of the Ricci tensor are given by (with the

index i not summed)

R0
0 = Rrr = −e

ν

2

[
ν ′′ + (ν ′)2 + (n+ 2)

ν ′

r

]

Rii =
−1

r2

[
eν(1 + n+ rν ′)− (n+ 1)

]
, (2.6)

where now a prime denotes partial differentiation with respect to r. The Einstein equations

resulting from the EH action augmented with our matter distribution can be conveniently

written in the form

RBA =
1

Mn+2
∗

(
TBA − δBA

T

n+ 2

)
, (2.7)

where T is the trace of the stress-energy tensor, T = T AA . Note that given our assumptions

there are only two distinct Einstein equations. Writing g00 = eν = 1−A(r), the Rii Einstein

equation leads to the following first order differential equation for A(r):

A′ +
n+ 1

r
A =

1

Mn+2
∗

2rρ

n+ 2
, (2.8)

from which we obtain the following solution, after substituting the above expression for ρ

and demanding that A(r)→ 0 as r →∞:

A(r) =
1

Mn+2
∗

M

(n+ 2)π(n+3)/2

1

rn+1

∫ r2/4θ

0
dt e−tt(n+1)/2 . (2.9)

This result is seen to reduce to that of NSS when n → 0 as well as to the usual D-

dimensional Schwarzschild solution when θ→ 0. The remaining R0
0 Einstein equation just

– 4 –
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returns to us the continuity equation for the stress-energy tensor, hence, nothing new. Note

that given our assumptions these results allow us to calculate A(r) for any chosen form of

the mass distribution ρ(r).

The horizon radius, RH , occurs at values of r where g00 = 0, i.e., where A(r) = 1.

Defining for convenience the dimensionless quantities m = M/M∗, x = M∗RH and y =

M∗
√
θ, along with the constant

cn =
(n+ 2)π(n+3)/2

Γ(n+3
2 )

, (2.10)

the horizon radius can be obtained by solving the equation

xn+1 =
m

cn
Fn(z) , (2.11)

where z = x/y and the functions Fn(z) are given by the integrals

Fn(z) =
1

Γ(n+3
2 )

∫ z2/4

0
dt e−tt(n+1)/2 . (2.12)

These integrals can be performed analytically when n is odd, e.g., F1 = 1 − e−q(1 + q),

F3 = 1 − e−q(1 + q + q2/2) and F5 = 1 − e−q(1 + q + q2/2 + q3/6), etc, with q = z2/4.

(For n even these functions can be expressed in terms of combinations of error functions.)

Given their definition it is clear that the Fn vanish as ∼ zn+3 when z → 0 and they are

seen to monotonically increase with increasing z; as z →∞ our normalization is such that

Fn → 1. This implies that the BH mass, m, diverges as either x → 0,∞ for fixed y and

that a minimum value of m must exist for some value of x. Since x appears on both sides

of the above equation determining the horizon radius, a trivial relationship between m and

x no longer occurs as it does for the ordinary D-dimensional Schwarzschild BH solution.

In the θ, y → 0 limit, corresponding to the usual commutative result, the upper limit of

the integral defining the functions Fn becomes infinite and we arrive at the well-known

standard result[11] as then Fn → 1:

m = cnx
n+1 . (2.13)

Note that if we had chosen a different form for the matter distribution representing

the smeared point mass source only the set of functions Fn(z) would be changed but their

general properties would be identical to those above. For example, if we had taken a

smearing of the modified Lorentzian form, ρ ∼ (r2 + θ′2)−(n+4)/2, (with the parameter θ′

not necessarily being the same as θ) then the corresponding functions, which we’ll call Gn,

would also vanish as z → 0 in a power law manner and go → 1 as z →∞ in a monotonic

fashion. For example, one obtains G0(z) = 2
π (tan−1 z − z

1+z2 ) which we observe has these

same limiting properties and is quite similar to the Fn qualitatively. More generally we

find that the Gn are given by the integrals

Gn(z) =
2

π

(n+ 2)!!

(n+ 1)!!

∫ z

0
dt

tn+2

(1 + t2)(n/2+2)
. (2.14)

– 5 –
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Figure 1: Horizon size in the NC scenario compared to the commutative result as a function of

z = x/y for fixed values of m. On the left-hand side of the figure, from bottom to top, the curves

correspond to n = 1 to 7.

These basic properties of the Fn (and Gn) capture the essential aspects of the NC physics.

Other possible smearings, such as a straightforward exponential, would also lead to quite

similar results.2 We will have more to say about this below but note that many of the

specific expressions that we will obtain remain applicable if we take a different form for the

smeared mass distribution.

It is interesting to inquire how the NC value of x, for the moment explicitly denoted as

xNC , compares with the usual D-dimensional result. Clearly for any fixed value of m the

ratio xNC/x can be expressed solely via the functions Fn and is thus only dependent upon

the ratio z = x/y and n; the result of this calculation is shown in figure 1. In examining

these results, as well as those in the following figures, it is important to remember than

when n = 0, M∗ = MP l; for all larger values of n, M∗ ∼ 1 TeV. In this figure we see that

for large values of z >∼ 3 we recover the commutative result for all n since the NC scale is

far smaller than the horizon size in this case. However when the two scales are comparable

or when the horizon shrinks inside the NC scale the value of x is greatly reduced for fixed

m. Of course, we really should not trust the details of our modeling of the NC effects

when z is extremely small, i.e., when x is very much less than y. It is also in this very

region where most of the differences between, e.g., the Gaussian and Lorentzian forms of

the smeared mass distribution would be expected to begin to appear.

More generally, we can now calculate m as a function of x for fixed y. Instead of

2For the case of an exponential, the corresponding functions, Qn(z), are found to be related to the Fn
above as Qn(z) = F2n+3(z2/4).
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a monotonically increasing function ∼ xn+1, we find that m(x) is now a function with a

single minimum and which grows large as either x → 0 or → ∞. For small x we find

the scaling m ∼ yn+3/x2 while the usual commutative behavior is obtained at large x,

∼ xn+1. Figure 2 gives a first rough indication of this behavior. The existence of a minima

has several implications: (i) a minimum value of m implies that there is a physical mass

threshold below which BH will not form. (ii) The inverse function, x(m), is double valued

indicating the existence of two possible horizons for a fixed value of the BH mass; this is

a potentiality first pointed out by NSS and something we will return to below. In figure 2

we see several additional features: first, as y increases for fixed n so does m except where x

is large and we are thus residing in the commutative limit. Also for large y we see that m

increases with n as it usually does in the commuting case. This is not too surprising given

the small x scaling behavior of m above. Secondly, we see that for large y the values m are

always large and the position of the mass minimum moves out to ever larger values of x

as y increases. For example, if y = n = 1 then m >∼ 400 and lighter BH do not form. Such

large mass values are far beyond the range accessible to the LHC if we assume M∗ ∼ 1 TeV,

i.e., the interesting range roughly being 1 <∼ m <∼ 10 or so.3

Since we are interested here in BH that can be created at colliders we will restrict our

attention to smaller y values. In fact a short calculation shows that we need 0.05 <∼ y <∼ 0.2

in order to get into the LHC accessible mass region 1 <∼ m <∼ 10. To demonstrate this we

must find the minimum value of the BH mass, mmin as a function of y for various values of

n. This can be done in a two-step procedure: first we find where in x the mass minimum

occurs for fixed values of y, i.e., where ∂m/∂x = 0. Calculating this derivative we see that

the minimum can be obtained by solving the equation (using for convenience the variable

q = x2/4y2 introduced above):

Fn(q)− 2q(n+3)/2e−q

(n+ 1)Γ(n+3
2 )

= 0 , (2.15)

which has a single, non-zero root q0(n). For any y this tells us the value of the horizon

radius where the minimum mass occurs, xmin = 2y
√
q0(n), which we can now use to obtain

mmin employing the equations above. The result of this calculation is shown in figure 3.

Here we see that for n in the range 1 to 7 the relevant values of y are rather narrow, not

differing from y '0.1 by more than about a factor of 2.

It is important to recall that for the ordinary commutative D-dimensional BH solution

both mmin and xmin are algebraically zero. However, since we believe that mmin >∼ 1 is

required to produce a BH, stronger conditions are usually imposed. In our case the results

shown in figure 3 represent the algebraic lower bound on m which certainly → 0 as θ→ 0.

Physically, we might crudely imagine that mmin 'Max(1,ma
min) where ma

min is the result

shown in figure 3. We note that having a finite mmin implies a BH production threshold

while a finite xmin implies a minimum BH production cross section, σBH ' πx2
min/M

2
∗ , at

colliders such as the LHC as is shown in Figure 4. Here we see that far above threshold the

3Note that we do not expect BH to form for masses much less than M∗ so that it is reasonable to believe

that m >∼ 1.

– 7 –
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Figure 2: BH mass as a function of the horizon size for n = 0(solid), n = 1(dashed) and n =

2(dotted). The upper(middle, lower) set of curves correspond to y = 10(1, 0.1).

BH production cross section scales like ∼ m2/(n+1) as would be expected in the commutative

theory. However, for lighter BH this cross section falls significantly below this simple scaling

rule and becomes quite small in the neighborhood of mmin, almost but not quite vanishing.

We can now focus on this region of small y; for simplicity in what follows we will

generally concentrate our results on the case y = 0.1. Figure 5 shows m(x) for y = 0.1−0.2

for n in the range 0 to 7. Note that generally larger n leads to smaller horizon radii for

fixed y and already at y = 0.2 we see explicitly that BH are too massive to be produced at

the LHC as expected from the above analysis if M∗ ∼ 1 TeV. One also sees that at x ∼ 1

the asymptotic behavior, m ∼ xn+1, has already begun to set in for all n.

As an example of the insensitivity of these results to our Gaussian parameterization

of the smearing due to NC effects, let us briefly considered the modified Lorentzian form

mentioned above. Setting y′ = M∗
√
θ′ = 0.1 (which is not necessarily the same as y = 0.1),

we again evaluate m as a function of x. The result of this calculation is shown in figure 6

which we should compare with the top panel of figure 5 that yields essentially the same

result in the asymptotic large x >∼ 0.5(as it should since this is the commutative limit).

In both cases a minimum mass occurs at relatively small x with somewhat similar values

of m. mmin decreases in both cases as n is increased and the corresponding value of xmin
also decreases as n is increased. The mmin values are seen to be quite comparable in the

two cases. The greatest difference in the two results is seen to occur in the region of x

below xmin where there is the most sensitivity to NC effects and the detailed shape of

the BH mass distribution. This is just what we would have expected; in the region where

NC effects just begin to be felt the detailed nature of the peaked mass distribution is not

– 8 –
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Figure 3: Minimum BH mass as a function of y showing the (very) approximate mass range

accessible to the LHC between the dashed lines. On the left-hand side from top to bottom the

curves correspond to n = 1, 3, 5 and 7, respectively. The allowed parameter range is above and to

left of each curve.

Figure 4: NC BH production subprocess cross section as a function of m for y = 0.1. From right

to left at the bottom of the figure the curves correspond to n=1 to 7.
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Figure 5: Same as in figure 2 but now for y = 0.10(top), 0.15(middle) and 0.20(bottom) with the

dotted curve being for n = 0. From top to bottom on the left-hand side of the figure the solid

curves are for n=1 to 7.

actually being probed. What is really being probed in this parameter range is the fact that

there is a peaked mass distribution instead of a δ-function source, i.e., the BH has a form

factor due its finite size, and not the details of its shape. Only at smaller values of the radii

– 10 –
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Figure 6: BH mass as a function of the horizon size x for y′ = 0.1 using Lorentzian smearing. From

top to bottom in the middle of the figure the curves correspond to n = 0, 2, 4 and 6, respectively.

(relative to the values of y or y′) do the differences in the details of the mass distribution

become important. In fact, we can if we wish tune our chosen value of y ′ to make these

two sets of curves even more alike. Since the majority of the effects we will discuss are

sensitive only to physics with x ≥ xmin, this short analysis shows that the general features

of the results that we obtain below are not particularly sensitive to how the NC smearing

of the mass distribution is performed.

In order to understand the possibility of the formation of two (or no) horizons, we

follow NSS and consider the metric tensor component g00 as a function of the dimensionless

radius co-ordinate M∗r as shown in figure 7. Here we will assume that m = 5, a typical

value which is kinematically accessible at LHC, for demonstration purposes. Recall that

horizons occur when g00 = 0. With y = 0.1 all of the curves pass through g00 = 0 twice

corresponding to two horizons, one on either side of xmin. This explains why x(m) is double

valued in figure 5, i.e., the two solutions correspond to the two radii where g00 vanishes.

For n = 0, the case studied by NSS, these two horizons are rather close in radius but this

separation grows significantly as n increases. When y = 0.15, we see that for n = 0 − 4

no horizon form as g00 >∼ 0.13. This corresponds to the result observed in figure 5 for

y = 0.15 where we see that for this range of n the value m = 5 is not allowed. However,

for n ≥ 5, we again obtain two horizons; clearly a tuning of parameters will allow the two

horizons to converge to the case of a single degenerate horizon at xmin as found by NSS.

For both values of y we note that as M∗r → 0 the metric is no longer singular as in the

pure Schwarzschild case as was noted by NSS in 4-d (as we are inside a well-behaved mass

distribution), independently of the existence of any horizons. This is further confirmed

– 11 –
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by constructing the Ricci curvature invariant, R, as can be easily done from the Einstein

equations above; in fact, we find that as x → 0, R ∼ y−(n+3). Furthermore, and more

explicitly, apart from an overall numerical factor, R ∼ my−(n+3)[n+4− (M∗r)2

2y2 ]e−(M∗r)2/4y2

so that R is seen to vanish as M∗r→∞ as expected and undergoes a change of sign in the

region, e.g., M∗r ∼ 0.2 − 0.5 for y = 0.1 independently of m and only weakly dependent

on the value of n. As we will now see only the ‘outer’ horizon, i.e., the one with x ≥ xmin
is actually relevant to us.

Our next step is to determine the thermodynamic behavior of these NC BH; to do this

we first must calculate the Hawking temperature of the BH. This can be done in the usual

manner by remembering that

TH =
1

4π

deν

dr
|r=x/M∗ , (2.16)

i.e., the temperature is essentially the r (radial) co-ordinate derivative of the metric eval-

uated at the horizon radius. Defining for convenience the dimensionless temperature,

T = TH/M∗, we obtain from the above form of the metric

T =
n+ 1

4πx

[
1− 2q(n+3)/2e−q

Fn(q)(n+ 1)Γ(n+3
2 )

]
. (2.17)

Note that as expected T returns to the usual commutative result in the q →∞ limit, i.e.,

the quantity in the large square bracket above→ 1 in this limit. It is instructive to compare

the temperature we obtain in both the NC and commutative cases for various values of the

parameters; the ratio of these quantities is shown in figure 8. This ratio is seen to be near

unity for large z as one would expect but it decreases rapidly as z approaches the ∼2-3

range from above. The temperature is also seen to vanish at the same z value where the BH

mass is minimized. For smaller z, T becomes negative (which is where the second horizon

occurs) and thus we enter a region that might usually be considered unphysical. If we had

instead chosen the Lorentzian smearing these results would be quite similar qualitatively.

Figure 9 shows the actual NC temperature as a function of x for y = 0.1 and different

n values. Here we see that T is quite close to its commutative value for x near unity,

goes through a maximum as x decreases and then falls to zero at the BH mass minimum

point. From these results and figure 5 above we can now trace the history of the entire

semiclassical BH evaporation process. 4 Consider a BH formed in a suitable parameter

space region with moderately large values of m ∼ 8 − 10 (and, hence, with large x). For

such BH their Schwarzschild radii are too large to feel the effects of the NC scale in the

formation process since x À y. As in the usual commuting picture, when the BH emits

Hawking radiation it loses mass and gets hotter and thus radiates even more quickly. As

the BH shrinks it begins to feel the NC effects and the temperature reaches a maximum in

the mass region m ' 1 − 7, the specific number depending on the value of n. As the BH

continues to lose mass its temperature now decreases so that it radiates ever more slowly.

Finally, as m approaches mmin the semiclassical radiation emission processes ceases since

4Before beginning this discussion we must recall the usual argument discussed above that if mmin lies

below ∼ 1 then no BH will form; we will ignore this prejudice in the following discussion treating mmin as

the true minimum BH formation mass as derived from the theory itself.
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Figure 7: g00 as a function of M∗r assuming m = 5 for either y = 0.10(top) or 0.15(bottom). The

dotted curve corresponds to n = 0 while from top to bottom on the left-hand side of the figure the

solid curves are for n=1 to 7. The dashed line corresponds to g00 = 0.

T → 0 has been reached leaving a classically stable remnant. Though sounding somewhat

unusual such a possibility has been discussed in the literature for a number of alternative

BH scenarios which go beyond the basic picture presented by General Relativity based

on just the EH action[11, 13]. 5 Whether quantum effects destabilize such a relic is not

5These include models with higher curvature invariants in the action as well as those where a minimum
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Figure 8: The ratio of the BH NC temperature to that obtained in the commutative limit where

there is only a point matter source. The dotted curve corresponds to n = 0 whereas, from bottom

to top on the left-hand side of the figure, the solid lines correspond to n=1 to 7.

known.

It is easy to convince oneself that a classically stable remnant is the natural outcome of

this scenario. In the usual treatment of BH decays, the mass loss rate (assuming a perfect

radiator) is given by

dm

dt
= −Ξdx

d+2T d+4 , (2.18)

with Ξd being a positive numerical constant. For decays dominantly to bulk(brane) fields

we have d = n(0). In either case, clearly the lifetime of the BH is then given by

tBH = −Ξ−1
d

∫ mmin

minitial

dm

xd+2(m)T d+4(m)
, (2.19)

with minitial being the original BH mass. We recall from above that while x(m) is double

valued it is well-behaved and never vanishes. However, on the otherhand, we also know

that T (m) → 0 as m → mmin. Thus for all n (and any d), tBH will be driven to infinity

due to the presence of a singular denominator in the integrand implying a stable relic.

(Of course, an initial very massive BH will radiate down to a mass very close to mmin

quite quickly.) This must happen in any model that predicts T → 0 at finite x due to a

corresponding singularity. For the commuting case, since T ∼ 1/x, the integrand is never

singular so that the BH lifetime remains finite.

length scale exists or where the Newton constant is taken to be a running parameter.
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Figure 9: The NC BH temperature as a function of x(top panel) and m(lower panel) for fixed

y = 0.1. The dotted curve corresponds to case of n = 0 whereas, from bottom to top on the

right-hand side of the figure, the solid lines correspond to n=1 to 7.

The lower panel in figure 9 summarizes this discussion where we see that as m decreases

from a large value the temperature increases, reaches a maximum value and then falls to

zero at mmin leaving a classically stable remnant.

This unusual temperature behavior in the NC case can also be studied more fully by

examining the BH heat capacity/specific heat, C. In the commutative case, C is always

– 15 –
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finite (away from x = 0) and negative since the BH gets hotter as it loses mass. Let we

define

C =
∂m

∂T
=
∂m

∂x

(
∂T

∂x

)−1

, (2.20)

which we can explicitly write as

C = −4πcnx
n+2Fn(q)−1

[
1− 2Hn(q)

(n+1)

1− 2Hn(q)
(n+1) + 4qHn(q)

(n+1)

(
(n+3)

2q −
Hn(q)
q − 1

)
]
, (2.21)

where for convenience we have defined the set of auxiliary functions

Hn(q) =
q(n+3)/2e−q

Fn(q)Γ( (n+3)
2 )

. (2.22)

Using this expression, figure 10 shows the results for the NC BH heat capacity as a function

of both x and m for our standard choice of y = 0.1. We first see that C remains negative

at large x and asymptotes to its commutative value, C = −4πcnx
n+2, as it should. Further

we note that at x = xmin (or at m = mmin) we find that C → 0 as was expected. BH with

mass mmin are no longer capable of mass loss since they have zero temperature. Between

these two regimes the behavior of C is quite interesting. Consider C as a function of large

and decreasing x. C at first decreases in magnitude as it does in the commutative case.

However as we know from above, for some n-dependent x value, T reaches a maximum and

then decreases. This implies that the magnitude of C then increases and becomes singular

for this particular x value. For lower x the sign of C changes as now ∂T
∂x > 0 and then

approaches zero at mmin. This is even more obvious when we consider C as a function of

m. For large m the BH radiates as in the commutative case as C decreases in magnitude as

m is reduced. However, at some point the NC effects turn on and −C begins to increase,

becoming singular where ∂T
∂m = 0, the location of temperature the maximum. For smaller

masses, as the BH radiates and gets lighter the temperature decreases so that we are now

in a region of positive heat capacity. As m decreases further to mmin, C becomes zero for

the remnant.

Our next step in examining the thermodynamics of NC BH is to consider the value of

the entropy which is defined via

S =

∫
dx T−1∂m

∂x
= 4πcn

∫ x

xmin

dv
vn+1

Fn(v2/4y2)
, (2.23)

where here we have made the natural choice that the entropy vanish at xmin where the BH

mass m is minimized for fixed values of y and n. In the commutative limit where θ, y → 0

then xmin → 0 and we recover the usual lower limit of integration. Figure 11 shows the

values of the entropy for various n as a functions of x or m for our canonical choice of

y = 0.1. We again observe that the commutative power law behavior, S = 4πcn
xn+2

(n+2) , is

recovered in the large x >∼ 1 limit as expected. It is more interesting to consider S as a

function of m; as we see from the figure, while the entropy scales as ∼ m(n+2)/(n+1) for

large m it rapidly falls below this scaling law to zero as m approaches mmin from above.
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Figure 10: Negative of the NC BH heat capacity/specific heat as a function of x(top panel) and

m(bottom panel) for fixed y = 0.1. The dotted curve corresponds to case of n = 0 whereas, from

bottom to top in the middle of the figure, the solid lines correspond to n=1 to 7. In the bottom

panel, the parameter region with negative temperatures has been removed.

Finally, we also examine the free energy of the NC BH which is simply given by

combining the above thermodynamic quantities:

F = m− TS . (2.24)
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Figure 11: The NC BH entropy as a function of x(top panel) and m(bottom panel) for fixed

y = 0.1. From left to right (right to left) at the bottom of the top(bottom) panel the the curves

are for n = 1, 3, 5 and 7, respectively.

As seen in figure 12, it too returns to its commutative value, F = m/(n+2), in the limit of

large x >∼ 1 or large m. However, for x = xmin it is clear that F = m for all values of y and

n since both T and (by definition) S vanish at this point. Immediately above x = xmin
(or mmin), F decreases slightly, until it matches onto the asymptotic ∼ xn+1 behavior.

For some parameter values F can even become negative in this intermediate mass regime.
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Figure 12: The NC BH free energy as a function of x(top panel) and m(bottom panel) for y = 0.1.

From top to bottom on the left-hand side the curves correspond to n = 1, 3, 5 and 7, respectively

Generally we see the unusual behavior that m = mmin is not the location of a minimum

in F as either a function of x or m. This minimum lies near the values of x and m where

T is maximized.
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3. Discussion and conclusions

Space-time noncommutativity and extra dimensions are both well-motivated ideas within

the string theory context and it is natural for them to make their appearance felt as one

approaches the fundamental scale. In more than four dimensions it is possible for this scale

to be not far from ∼TeV and thereby address the gauge hierarchy problem. If this mass

parameter is indeed this low it is likely that black holes will be produced at the LHC in

sufficient quantities that their properties will be well measured. The occurrence of NC also

at a similar scale could lead to significant modifications in the anticipated properties of

these BH. Since a complete NC theory of gravity does not yet exist it becomes necessary

to model the NC effects within the commutative General Relativity framework.

Nicolini, Smailagic and Spallucci presented a physically motivated model of this kind

in 4-d, where the essential aspects were the Gaussian smearing of matter distributions on

the NC scale and the continued applicability of the EH action. They then went on to

examine NC effects on BH physics. In this paper we extended this NC BH analysis in

several ways: (i) we generalized the NSS study to the case of extra dimensions with a

fundamental scale in the TeV range so that the associated BH can be produced with large

cross sections and studied in detail at the LHC. While much of the BH behavior observed

in extra dimensions was similar to that obtained in 4-d, some significant modifications to

the previously obtained 4-d results were observed. However, there appears to be an overall

dominance of NC effects over those that arise due to the existence of the extra dimensions.

(ii) We demonstrated that the essential physics induced by NC smearing is not particularly

sensitive to the nature of the smearing function. In particular we explicitly showed that

Gaussian and Lorentzian smearing lead to essentially the same behavior for the expected

modifications of the BH mass-radius relationship due to NC effects. (iii) We extended the

NSS analysis to include several other thermodynamic quantities which are of interest in

the study of NC BH such as their entropy, heat capacity and free energy.

Perhaps the most important qualitative influence of NC on BH physics was already

observed in 4-d by NSS, i.e., the existence of a classically stable remnant whose mass and

radius are completely fixed by the NC scale and the number of dimensions. Within the

framework of extra dimensions, if the fundamental scale is not too large then BH and their

remnants will be copiously produced at the LHC and studied in detail. The observation

of NC effects in the properties of these BH can open a new window on the fundamental

theory of gravity and space-time.
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